

Technology Developments & Equipment Requirements

for Scaling Up Photonics Production

Torsten Vahrenkamp & Stefano Concezzi
Presentation generated by Moritz Seyfried

Photonics – It is just everywhere

Telecom/Datacom

CPO vision
[Credit: Ranovus]

Optical backbone of data centers and telecommunication networks. Pluggable or CPO.

LiDAR Development

Solid-state-based LiDAR systems, e.g. Intel/Mobileye LiDAR system.

Bio-Sensing

Optical sensing of bio-markers for constant medical monitoring.
[Rockley Photonics]

Quantum Technology

Generation of entangled photons for quantum key distribution.
[Quantum Optics Jena]

PICs inside

Telecom/Datacom

PIC-based approach from PHIX/Teraway for high-speed transceiver module.

LiDAR Development

Solid-state-based LiDAR systems such as e.g. Intel/Mobileye LiDAR system. [Mobileye]

Bio-Sensing

8 MZI building blocks showing waveguides outlining the sensing area to be functionalized. [LioniX]

Quantum Technology

PIC-based approach for building a large-scale quantum computer.
[PsiQuantum]

- Known good photonic integrated circuits (PICs)
- → Need for electro-optical (wafer-level) testing

- Integration of laser source
- → Need for high-precision die bonding
- Fiber array assembly and alignment
- → Need for fiber interconnect

- Reliable machine for volume production
- → Need for line systems and machine learning

- Known good photonic integrated circuits (PICs)
- → Need for electro-optical (wafer-level) testing

- Integration of laser source
- → Need for high-precision die bonding

- Fiber array assembly and alignment
- → Need for fiber interconnect

Need for line systems and machine learning

Electro-optical wafer-level testing

Edge coupling

Electro-optical wafer-level tester for verification of PIC functionality

18.01.24

Electro-optical wafer-level testing

Grating coupling

Electro-optical wafer-level tester for verification of PIC functionality

50 µm

Electro-optical wafer-level testing

Electro-optical wafer-level tester for verification of PIC functionality

Wafer table

Next-generation wafer-level tester:

- Throughput requirements
- Interaction with available tester
- RF requirements
- Measurement equipment
- Data handling
- •

Optical alignment

- Known good photonic integrated circuits (PICs)
- → Need for electro-optical (wafer level) testing

- Integration of laser source
- → Need for high-precision die bonding
- Fiber array assembly and alignment
- → Need for fiber interconnect

Need for line systems and machine learning

Transmittance over Wavelength of Silicon

Before alignment

Pick-up tool on high-accuracy 6-axis aligner

After alignment

ASSEMBLYLINE

Through-silicon Align-&-attach with IR

Alignment accuracy:

 \rightarrow In xy-direction \rightarrow 3 σ = +/- 0.22 μ m

Can be combined with localized through-silicon laser soldering

Alignment accuracy:

> In xy-direction \rightarrow 3σ = +/- 0.22 μm

Wafer-level option available early this year!

- Known good photonic integrated circuits (PICs)
- → Need for electro-optical (wafer level) testing

- Integration of laser source
- → Need for high-precision die bonding
- Fiber array assembly and alignment
- → Need for fiber interconnect

Need for line systems and machine learning

Fiber interconnects

Fiber interconnect from chip to connector

Fiber preparation

www.senko.com

Plug mounting

ficontec photonics assembly & testing

- Known good photonic integrated circuits (PICs)
- → Need for electro-optical (wafer level) testing

- Integration of laser source
- → Need for high-precision die bonding

- Fiber array assembly and alignment
- → Need for fiber interconnect

- Reliable machine for volume production
- → Need for line systems and machine learning

Line systems

Air purity optical detector sensor for a German Tier 1

Mass production site in Thailand with over 150 machines, incl. automatic module handling (cassette to cassette)

Machine learning

KPI tracking

AI/ML for process optimization

Assembly line

Required solutions

Wafer-level testing

High-precision die bonding

Fiber interconnects

Machine learning

Required solutions

Wafer-level testing

High-precision die bonding

Fiber interconnects

Machine learning

Conclusions

- Assembly & Test are (and will remain) the cost driver for photonic products
- Automated assembly steps for most process steps available
- Last decade mainly focussed on improving individual assembly machine performance
- This decade will focus on increasingly higher levels of automation

Thank you!

Torsten Vahrenkamp CEO

Im Finigen 3 28832 Achim, Germany

Torsten.Vahrenkamp@ficontec.com +49-4202-51160400