The race to 800G: a reality check

Mark Filer

Principal Engineer, Azure Hardware Architecture (AHA)

Disclaimer – Statements of Future State

Material does not necessarily represent opinions of Microsoft and certainly cannot be construed as any form of commitment by Microsoft towards pursuing concepts described herein

Is there demand for 800G?

Q8 When are you expecting to need a standard coherent line side with a capacity larger than 400G/lambda?

- Yes!
- 2020 OIF Network Operator survey on Beyond 400G*
- But: power...

Q11 What is the maximum electrical power per port you anticipate supporting?

Q9 What router port speed do you plan to deploy after 400G?

^{*} OIF contribution oif2020.094

Retrospective: 100G to 400G

How do we build data center networks today?

Rack

- 10s of servers/rack
- server to ToR via < 2m
 DAC cables @ 50G

COBO: 800G | 13 Jan 2021

Row

- 10s of racks / row
- ToR to Tier 1 clos fabric via < 30m AOC@ 100G
- 100G AOC power = 2.0-2.5 W

Datacenter

- "lots" of rows / DC
- Tier 1 to Tier 2 connected < 1km with parallel fiber via PSM4
- massively parallel
 Tier 2
- 100G PSM4 / CWDM4 power = 3.0 – 3.5 W

Region

- "lots" of DCs / region possible
- DC-RNG and RNG-RNG connected ≤ 100km via DWDM PAM4
 - Some campus builds connected via bulk fiber (< 2km)
- 100G PAM4 power = 4.5W
- single percentage of total server BW in DCI

COBO: 800G | 13 Jan 2021

COBO: 800G | 13 Jan 2021

Elephant in the room... Power

- Equipment power consumption at 400G is already problematic!
- Switches projected @ 3x power of 100G
- Optics projected @ 3-4x power of 100G
- Challenges power envelopes of facilities
- Uses power that could be generating revenue (lost server capacity)
- Costs \$\$\$ and not green
- appear all but impossible

NETWORK COMPONENT OF DATACENTER POWER

Possible Solutions

- Photonics
 - Co-Packaged Optics (CPO)
 - Novel optical approaches
- Network architecture + HW changes
 - Collapsed tiers with multi-homed NICs (fanning out horizontally)
 - Simplified forwarding requirements → cooler ASICs
 - Additional integration, e.g. encryption on switch ASIC
 - Liquid cooling

Takeaway: we can't just keep scaling link bandwidths... "next gen" systems will require all of the above

Microsoft DC ecosystem technology life cycles

Radix argument revisited Why do we care about the datacenter radix?

Server-ToR-Tier1 topology

ToR bypass – multi-homed NIC

ToR bypass efficiencies (100G lane speeds)

	Tier1-ToR-server	ToR-bypass
failure domain	ToR is SPOF for rack	no SPOF – multi-homed NIC
switch ASIC count	4X-8X	1X
switch space + power	baseline	reduced space and ~1/3 power
switch radix	can't leverage higher radix chips (stranded capacity at ToR)	can leverage full switch radix (multi-chip T1 box)
oversubscription	3:1 typical	fully non-blocking in row
reach limits	DAC < 3m; AOC < 30m	1m-2km ⁺

Summary

- Power is the main limiter for "beyond 400G" data centers
- We can't continue to simply scale link bandwidths while building networks exactly as we do today
- Historical ecosystem life cycles would indicate we won't be ready for "800G" when the industry is (32x100G CPO will suit our needs better)
- 100G electrical lanes will be a foundational building block for powerefficient data center designs for the foreseeable future
- Future data center networks will require a combination of photonic innovation (e.g., CPO), optimized network architectures, and advanced hardware implementations

